1,907 research outputs found

    A Comment on "Brans-Dicke Cosmology with a scalar field potential"

    Full text link
    We show that a recent letter claiming to present exact cosmological solutions in Brans-Dicke theory actually uses a flawed set of equations as the starting point for their analysis. The results presented in the letter are therefore not valid.Comment: 2 pages, no figures. To appear in Europhysics Letter

    A simple and controlled single electron transistor based on doping modulation in silicon nanowires

    Full text link
    A simple and highly reproducible single electron transistor (SET) has been fabricated using gated silicon nanowires. The structure is a metal-oxide-semiconductor field-effect transistor made on silicon-on-insulator thin films. The channel of the transistor is the Coulomb island at low temperature. Two silicon nitride spacers deposited on each side of the gate create a modulation of doping along the nanowire that creates tunnel barriers. Such barriers are fixed and controlled, like in metallic SETs. The period of the Coulomb oscillations is set by the gate capacitance of the transistor and therefore controlled by lithography. The source and drain capacitances have also been characterized. This design could be used to build more complex SET devices.Comment: to be published in Applied Physics Letter

    Generalized squeezed-coherent states of the finite one-dimensional oscillator and matrix multi-orthogonality

    Full text link
    A set of generalized squeezed-coherent states for the finite u(2) oscillator is obtained. These states are given as linear combinations of the mode eigenstates with amplitudes determined by matrix elements of exponentials in the su(2) generators. These matrix elements are given in the (N+1)-dimensional basis of the finite oscillator eigenstates and are seen to involve 3x3 matrix multi-orthogonal polynomials Q_n(k) in a discrete variable k which have the Krawtchouk and vector-orthogonal polynomials as their building blocks. The algebraic setting allows for the characterization of these polynomials and the computation of mean values in the squeezed-coherent states. In the limit where N goes to infinity and the discrete oscillator approaches the standard harmonic oscillator, the polynomials tend to 2x2 matrix orthogonal polynomials and the squeezed-coherent states tend to those of the standard oscillator.Comment: 18 pages, 1 figur

    A model for the continuous q-ultraspherical polynomials

    Full text link
    We provide an algebraic interpretation for two classes of continuous qq-polynomials. Rogers' continuous qq-Hermite polynomials and continuous qq-ultraspherical polynomials are shown to realize, respectively, bases for representation spaces of the qq-Heisenberg algebra and a qq-deformation of the Euclidean algebra in these dimensions. A generating function for the continuous qq-Hermite polynomials and a qq-analog of the Fourier-Gegenbauer expansion are naturally obtained from these models

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    An Algebraic Model for the Multiple Meixner Polynomials of the First Kind

    Full text link
    An interpretation of the multiple Meixner polynomials of the first kind is provided through an infinite Lie algebra realized in terms of the creation and annihilation operators of a set of independent oscillators. The model is used to derive properties of these orthogonal polynomials

    The design, construction and evaluation of sprint footwear to investigate increased sprint shoe bending stiffness on sprint performance and dynamics

    Get PDF
    The design, construction and evaluation of sprint footwear to investigate increased sprint shoe bending stiffness on sprint performance and dynamic

    The algebra of dual -1 Hahn polynomials and the Clebsch-Gordan problem of sl_{-1}(2)

    Full text link
    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl_{-1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from a q-> -1 limit of the dual q-Hahn polynomials. The Hopf algebra sl_{-1}(2) has four generators including an involution, it is also a q-> -1 limit of the quantum algebra sl_{q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of the -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl_{-1}(2) algebras, so that the Clebsch-Gordan coefficients of sl_{-1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.Comment: 15 pages, Some minor changes from version #
    corecore